Layer Transfer (LT) Technology for High Performance Substrates

Francois Henley, President & CEO

Solid State Technology Engineered Substrates webcast

Engineered Substrates

• Engineered Substrates – a "must have" for advanced applications

- Applications Solar Cells, IC Devices, LCD Displays, 3D Packaging
- MOSFET leakage reduction => Reduced power dissipation
- Reduced capacitance => Higher speed and lower power
- Improved short channel effects => Stable device operation at small size
- Modification of Materials => Enables new material combinations

Same Geometry – higher performance and lower power using existing manufacturing technology

Core Technology and Markets

Layer-Transfer Process (Ex. SOI)

- Improved speed and performance
- Reduced heat generation
- Reduced power consumption
- Performance disadvantages
 - Requires additional process steps and equipment

DSB – Direct Silicon Bond

- Performance advantages
 - For equivalent circuit geometries, improved performance over bulk silicon
 - Potential direct replacement for bulk silicon
- Performance disadvantages
 - Additional processing required

Electron mobility is highest on (100) surface Hole mobility is highest on (110) surface

c-Si Films for Solar

- Type Thin/thick single-crystal Films
 - Performance advantages for Solar PV Cells
 - High conversion efficiency approx. 18% to 20%
 - No kerf losses
 - Significant material savings up to 20X
 - Performance disadvantages
 - Thin Films (<50 microns) will require module production and handling modifications

Thick c-Si Module

Thin c-Si Module

Silicon-on-Quartz/Silicon-on-Glass

- Type SOQ/SOG
 - Performance advantages for HDTV Projectors and FPDs
 - Better brightness
 - Lower Cost
 - Higher Resolution
 - Faster Speed
 - Higher Circuit Density
 - Performance disadvantages
 - Cost & Complexity

Materials challenges/solutions

• Challenges

- Silicon supply is restraining some markets (solar)
- Material costs are increasing
- Existing processes can't economically achieve required performance goals for new high performance devices
- Solution an alternative approach is needed
 - Engineered substrates break the cost/performance barrier

Manufacturing challenges/solutions

• Challenges

- Need to minimize changes to expensive, established manufacturing infrastructure
- Need to stick with known materials to minimize defects and production bottlenecks
- Solutions
 - Stick with known process technology
 - Add/modify known processes to add necessary manufacturing steps
 - Utilize known materials to speed time to market

Summary

- Engineered substrates open up new markets with new applications
- Layer-transfer offers a cost-effective process to achieve many variations of highly engineered films
- SiGen's processes and HVM tools are proven solutions in the semiconductor and display industries
- Packaging, solar, and opto-electronics offer new opportunities