Engineered Substrates

Engineered Substrates Using the NanoCleave[™] Process

Francois J. Henley President and CEO Silicon Genesis Corporation San Jose, California

SiGen Presentation Outline

- Engineered Substrates
- Why Layer-Transfer (LT)
- SiGen Layer-Transfer and Bonding Technologies
- Semiconductor Applications
- Packaging Applications
- Display Applications
- Solar Applications
- Conclusions

Demand for High-Performance ICs

High performance ICs and displays are essential in today's fastest growing next generation products

The Problem: Difficult to meet demand using just device geometry shrinks

The Solution - Engineered Substrates

- Engineered Substrates a "must have" for advanced applications
 - Applications IC Devices, LCD Displays, 3D Packaging
 - MOSFET leakage reduction => Reduced power dissipation
 - Reduced capacitance => Higher speed and lower power
 - Improved short channel effects => Stable device operation at small size
 - Modification of Materials => Enables new material combinations

Same Geometry – higher performance and lower power using existing manufacturing technology

Why Layer-Transfer?

- Most semiconductor layers use *planar* technologies.
- For many of the next-generation engineered substrate applications, <u>non-planar</u> technologies are needed

- SOI
- Strained-SOI
- 3D Devices
- FinFET/TriGate
- Cavity Engineering

SiGen Proprietary Technology

APPLICATIONS

- SOI high performance semiconductor
- Hybrid Orientations -DSB
 - SOQ Silicon on Quartz – Projection TVs and Displays
- SOG Silicon on Glass – LCD and Solar
- 3D Packaging

MEMS

Multiple large markets for SiGen's patented technology

SiGen's patented technology enables the transfer of thin donor layers onto semiconductor or other material substrates

SiGen Plasma-Activation and rT-CCP Tools

Standalone Plasma-Activation Tool

SiGen rT-CCP[™] Tool

SiGen Key Technologies

- Layer-Transfer
 - Bond Technologies (NanoBondTM)
 - NanoCleave[™] Layer-Transfer
 - Surface Finishing Technologies (NanoSmooth[™])
- Equipment Technologies
 - Plasma-Bond tool technology
 - rT-CCP Cleave tool technology
- New Material Combinations
 - Strained-SOI
 - GeOl
 - SOQ, SOG
 - Solar Cell Technology

semi

Innovation Points

- Cold Process allows unique dissimilar material systems
- Non-Contact Smoothing Best Ultra-Thin SOI uniformity
- Plasma-Bonding Excellent dry fusion bond specifications
 - Wide Applicability in multiple fields
 - Unique In-Situ Bond Technology
- Proven Compatibility
 - With next-generation applications
 - With existing semiconductor process equipment

Allow high-yield and cost-effective formation of 3D, SOI, SOQ, SOG, GeOI, and other material systems

Semiconductor Applications

SOI & Strained-SOI Application

- Multiple Commercial Licenses (MEMC, Others)
- Strained-SOI Demonstrated
- 200mm and 300mm SOI Proven in Production

300mm SOI Wafer

GeOI Substrate Application

- Silicon Base Substrate
- Single-Crystal Germanium Layer-Transfer
- Low-Temperature Bond and Cleave

Direct Silicon Bond Opportunity

7/19/2006

New Technology: Hybrid Orientation

Combining Highest PMOS and NMOS Mobility

Electron mobility is highest on (100) surface Hole mobility is highest on (110) surface

Welser, IEEE SVC EDS Seminar June 2005

Si-Si Hybrid Orientation Technology

As-cleaved

<110> direction (across and along view)

EPI-Smooth + Anneal

<110> direction (across and along view)

3-D Packaging Opportunity

7/19/2006

Stacked CMOS/Device Structures

- SiGen layer-transfer can be used for building stacked devices
 - Build CMOS/Device substrate with interconnects
 - Deposit CVD oxide and polish
 - Bond & Cleave silicon film (1000-5000Å range)
 - Post-Cleave processing

Cleavable Wafer

SOG/SOQ Flat-Panel Display Opportunity

7/19/2006

Silicon-On-Quartz (SOQ) Application:

- Quartz Base Substrate for Optical and RF Applications
- Single-Crystal Silicon Layer
- Higher quality and performance for HDTV Projectors
 - Better brightness
 - Lower Cost
 - Higher Resolution
 - Faster Speed
 - Higher Circuit Density
- Production Ramp

Benefits of cSOG for FPD Applications

- Single Crystal Silicon
 - Higher mobility than amorphous (a-Si) and Low-Temperature Polysilicon (LTPS)
 - Allows high-mobility silicon layers for high-density circuit integration

- High Performance Device Applications
 - Higher bandwidth mobile communication (3G and 4G)
 - Full-motion color video
 - Field sequential addressing with LED or OLED color backlight
 - Fast LC modes (i.e. VAN) important to exploit advantages

Single-Crystal SOG (cSOG) Opportunity

Figure 4 Comparison of pixel driving principle

Source: W.K. Kwak (Samsung SDI) SID 2005

7/19/2006

Large-Area Glass (SOG) Opportunity

As-Cleaved c-Si Film Quality

1. Roughness

10um x 10um AFM picture of the as-cleaved silicon film showing 43 Å RMS roughness

Solar Cell Opportunity

7/19/2006

A Large and Growing Market

U.S. Department of Energy Energy Efficiency and Renewable Energy

Global PV Market

Global PV Market Forecast

 Grid connected markets have emerged as a driving force for industry growth

Future Poly-Si Demand Will Keep PV Prices High

Silicon Demand in the Future

B. Klebensberger, SolarWorld AG, Semicon Europa 2006

...But Poly-Si is a Major Cost Factor

J. Haas, Centrotherm Photovoltaics, Semicon Europa 2006

SiGen Solar Cell Positioning

Conclusions

- Engineered substrates open up new markets with new applications
- Layer-transfer offers a cost-effective process to achieve many variations of highly engineered films
- SiGen's processes and HVM tools are proven solutions in the semiconductor and display industries
- Packaging, solar, and opto-electronics offer new opportunities

