

PolyMax[™] Enhanced Thin PV Wafers Technology

Thin Wafers Technical Considerations 6 5

Thin wafer value

- Theoretical improvements in CE to 70um thick wafers
- Poly savings below 100µm is primary aspect

Thin wafer processing

- Must have reduced breakage
- Micro-crack control will be critical: especially if hidden*

New processing conditions are already under development

Improved bowing, texturization, metallization, design - reported*

Tighter product distribution

- Wafer parameter control gives better process control
- Tighter distribution allows for better matching → lower cost

^{*}See IEEE 33rd PV conference session: Enabling Thin Crystalline Silicon Solar Cells May 15th, 2008

Market Context

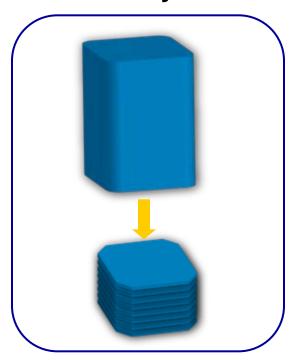
Market driver – lower production \$/W

- Lower cost
- Higher efficiency
- Better yield

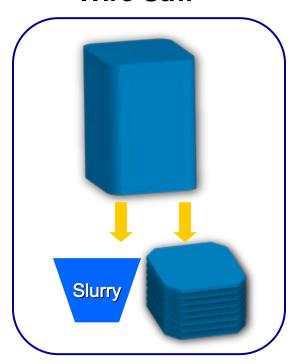
SiGen Polymax[™] approach to wafering

- Lower production cost:
 - ~1\$/wafer less vs. wire-saw
 - Improved utilization of Si: about 2-4x less gm/W vs. wire-saw
- Potentially higher cell conversion efficiency
- Improved wafer characteristics for better yield
 - Better TTV, strength, micro-crack control

PolyMax™ Bridges the Gap Between Thick & Thin



SiGen PolyMax[™] vs. Wire Saw Process



SiGen PolyMax™

- Enhanced c-Si wafers
- 2x to 4x more wafers
- Reduction: ~\$1/wafer
- No Kerf-loss

Wire Saw

- Poor TTV, micro-cracks
- No roadmap to <100µm</p>
- High cost of consumables

PolyMax[™] Enhanced Silicon

• Unique Characteristics:

- Thickness uniformity TTV at 5%
- Superior mechanical strength 10X stronger
- No hidden micro-cracks for downstream failures
- Scalable thickness 20µm 150µm

PolyMax[™] benefits cascade to all links in the PV production chain

Value throughout the PV Chain

Adds value to the full chain → Lower \$/W

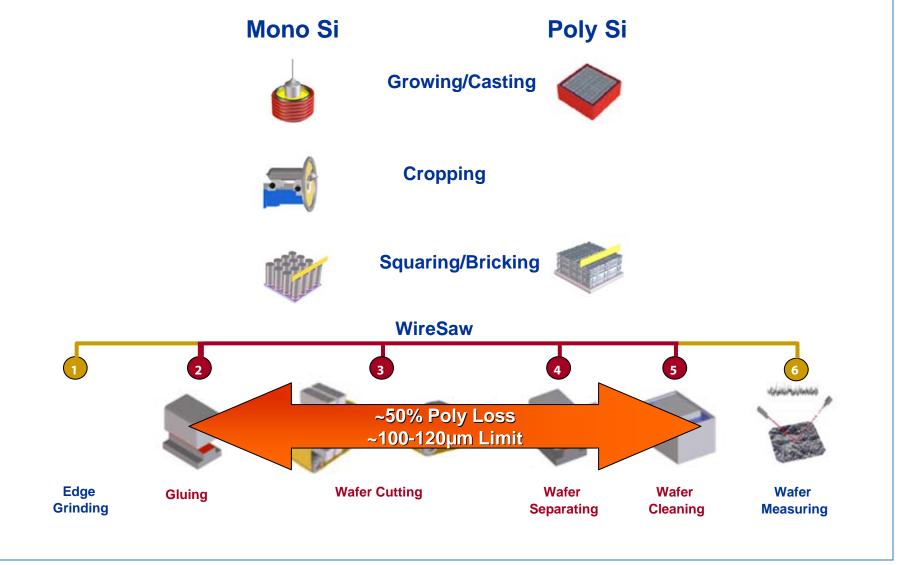
Context

Ingots and wafers represent the biggest portion of the value chain with respect to capital and materials costs

Need to reduce breakage and improve TTV and micro-cracks for: yield and reliability

PolyMax™ Value

Greater wafer capacity from a given plant


- No kerf loss
- No consumables
- No hidden micro-cracks
- Superior mechanical strength
- Better TTV

No hidden micro-cracks and superior mechanical strength

- Lower breakage
- Higher yield
- Better TTV
 - Higher yield
 - Enables improved cell design

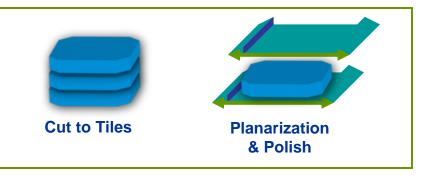
Traditional PV Wafer Fabrication

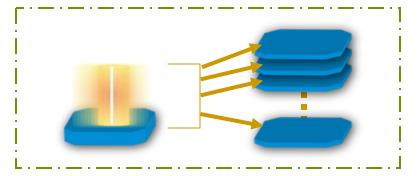
PolyMax[™] Wafer Manufacturing Flow

Growing/Casting

Cropping

Squaring/Bricking


Edge Grinding



c-Si Ingot Preparation

Detach and Singulate

SiGen PolyMax™ Process

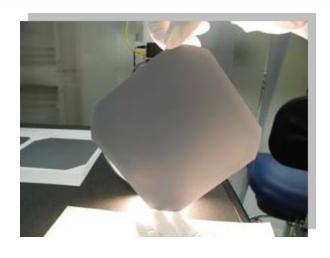
Two-Step Process: Implant & Cleave

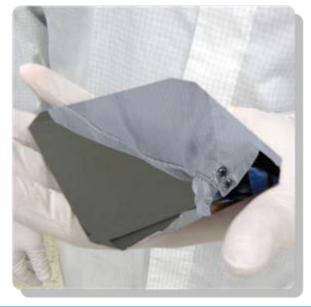
- ✓ Eliminates kerf loss
- ✓ Eliminates consumables
- ✓ SiC, Slurry, Wire

•Eliminates other systems

- ✓ Gluing
- √ Singulation
- ✓ Cleaning
- ✓ Less damage Etch

Direct Cleave Process




Silicon Boule

Cleaved Wafers

SiGen PolyMax[™] is the Solution

- Enhanced c-Si wafers
- 2x 4x more wafers
- Reduction: ~\$1/wafer
- No kerf loss